Hardware-software complex LifePulsePro for assessment of variability of heart rate and interpretations according to the concepts of Ayurveda
Pulse diagnostics system, Heart Rate Variability, Ayurveda, polyvagal theory of Dr. Porges, Respiratory test,
Pulse patterns, Orthostatic test, Valsalva's test, Ruffier's test, BioFeedBack, symptoms of cardiac autonomic neuropathy - such information is offered to your attention. The information is intended for those who are interested in a new way and an alternative point of view on the assessment of a person's physical and psycho-emotional state.
It is obvious that a person's pulse is the main parameter by which one can judge the state of health. The pulse is easily felt on the wrists in the area of the radial artery or in the area of the carotid artery in the neck, and the pulse can also be easily heard by the ear in the area of the heart.
Since ancient times, pulse researchers have been trying to record pulse waves on some medium for study.
Simple mechanisms for recording the pulse were invented first.
Currently, various devices and sensors are used to record the pulse. The method of electrocardiography, with the use of electrical contacts and recording of skin bioelectric potentials, has become widespread. These devices are used to assess heart rate variability.
Initially, the study of heart rate variability was carried out using the analysis of electro cardioimpulses, when with the help of mathematical processing we could obtain graphs of cardiointervalograms, histograms of the distribution of cardiointervals, a diagram of the distribution of neighboring electrocardioimpulses, and with the help of the Fourier transform we could make a spectral analysis of the waves present in time-varying electrocardioimpulses.
The heart rate variability (HRV) study is a method for assessing health status and the impact of stress on the human body. Heart rate variability is a small fluctuation in the duration of the heart cycle that changes as inhale and exhale, and from the complex interaction of hemodynamic, electrophysiological and chemical processes occurring in the body. An indicator of heart rate variability is the degree of change in heart rate over a certain period of time time period.
The time intervals between consecutive heartbeats are called cardio intervals. The unit of measurement for cardio intervals is milliseconds (msec). If the intervals between heartbeats are relatively constant and vary slightly,then HRV is low. If their duration varies widely, then the HRV is high. A decrease in the degree of pulse variability in a healthy person is considered as a sign of stress regulatory processes.
However, when using the electrocardiography method, from the point of view of Oriental medicine, there is a small nuance - the pulses of excitation of the heart are studied, and not the parameters of the pulse wave that propagate through the body after the end of the electric pulse.
At the same time, Eastern methods of pulse diagnostics investigate the real pulse wave of the peripheral pulse.
LifePulsePro hardware and software package is designed to assess the patient's health status by complex analysis of pulse waves of capillary blood filling. Designed for express studies
of pulsations recorded by a special sensor and subsequent analysis of Heart Rate Variability parameters, taking into account changes in the amplitude of pulse waves .
The result of the analysis is an assessment of the patient's condition both in accordance with the methods of the pulse variability test and in accordance with the philosophy of Ayurveda.
Also, there are additional software modules for functional tests : Respiratory test (6 breath), Orthostatic test (30/15), Valsalva's test, Ruffier's test, BioFeedBack test.
Unlike the standard pulse variability test using electrocardiography methods and electrical contacts, the LifePulsePro system uses a photometric pulse sensor.
As the primary information in this system, the parameters of the real pulse wave of the peripheral pulse are used, and not the pulses of electrical excitation of the heart.
Thus, pulse waves are studied, which propagate after the end of electrical impulses of excitation of the heart and the release of blood into the cardiovascular system of the body.
This method more fully corresponds of the concepts of Oriental medicine.At the same time, this method allows we to use the entire mathematical apparatus developed to assess the variability
of the heart rate using electrocardio monitoring and provides additional information about the change in the amplitude of the pulse wave depending on the state of the body, under the influence
of internal and external factors.
The analysis and evaluation of pulsograms of capillary blood filling is done using standard methods of the pulse variability test.
The subsequent interpretation of the results of the pulse variability test is based on the polyvagal theory (the evolutionary
theory of the vagus nerve). This allows to proceed to the assessment of the patient's condition from the point of view of the
concepts of Ayurveda.
According to this theory, the autonomic nervous system of a person consists not of two, but of three parts. At the same time, the
vagus nerve has in its composition an ancient unmyelized part - this is the dorsal branch, which has come down to us from reptiles
and a new myelized part - this is the ventral branch, acquired by mammals. Each branch of the vagus nerve is associated with a
specific adaptive behavioral strategy. According to this theory, the work of the heart can be influenced by three components.
The first is the dorsal system, which autonomously includes the conditional mechanism "freeze, pretend to be dead, be in a daze"
in a situation of mortal danger or the conditional mechanism "do not move, digest food" in the absence of mortal danger, while
maintaining stress tension. The second is the sympathetic system, which includes the conditional mechanism "fight or run" in
an environment of stress and danger, or the conditional mechanism "move actively, play" in the absence of great stress, and the
third is the ventral system, which includes the conditional mechanism "make friends, communicate, help" regardless of the presence
or absence of an external threat.
The structure of the diagnostic system. The primary information is generated by the pulse sensor from the patient.
Structurally, the sensor consists of two parts -
a clip with a photometric sensor, which is put on the earlobe or on the finger, and connected to the second part, which is an analog signal
converter, which in turn transmits information to the USB connector of the computer. At the same time, the objectivity and
reliability of
the information received is ensured by stabilizing the supply voltage of the sensor, by not changing the
clamping force of the earlobe and using special circuit solutions in the electronic part of the device. In particular,
the analog signal conversion module contains filters, an amplifier, an analog-to-digital converter that forms a stream
of information for transmission to a computer via usb protocol. At the same time, the device records a pulse wave that
has spread through the human body and has been influenced by the functional systems of the body. The parameters of the
pulse wave after the completion of the action of an electric exciting pulse on the heart and receiving additional informational
influence in the process of passing through the vessels and tissues of the body are investigated. This is consistent with the
method of pulse diagnostics of oriental medicine, where the peripheral pulse removed from the heart is examined. The software
allows you to display pulsograms on the screen in the form of pulse wave bursts. The time interval between heartbeats, as
well as their amplitude, is measured in real time. The analysis and processing of the pulse recording results is carried out
in accordance with generally recognized methods, with the involvement of a standard mathematical apparatus for assessing heart
rate variability. This takes into account the gender of the patient - male or female and the age of the patient. In addition,
it is possible to connect a correction module to account for the patient's body type and temperament. The registry module is
used to store the data of the conducted research. The results of mathematical processing of the patient's pulsograms are presented in accordance with the methodology of the
pulse variability test.
Part 1. HRV test module.
Part 2. Analysis of the HRV test results.
Some provisions of the polyvagal theory in relation to the LifePuls soft for interpret the results according to Ayurveda
Based on the polyvagal theory and the study of the conduction of nerve fibers, during the innervation of individual organs
of the abdominal and thoracic cavity, as well as muscles and glands of the head, it can be concluded that there is a certain
relationship between the frequency ranges, as well as the amplitudes of heart beats with the activation of the branches of
the vagus nerve, along with the influence of the sympathetic nervous system on the heart.
Studies have revealed that the dorsal unmyelized branch of the vagus nerve, consisting of thick fibers, is designed to transmit
impulses with a very low frequency and affect hollow organs and tissues located below the diaphragm. The ventral myelized branch
of the mammalian vagus nerve is capable of conducting signals with a high frequency to affect organs and tissues located above
the diaphragm and in the facial part. Studies of spectral analysis and the spectrum of the envelope of rhythmograms allow us to
conclude that different frequency ranges of the heart work correspond to different degrees of exposure of individual parts of the
autonomic nervous system. The frequency spectrum of changes in cardiointervals can mainly be represented as the result of the
control action of the sympathetic nervous system and the separate two branches of the parasympathetic nervous system. The range
of very low frequency, when slowly varying waves of the amplitude of the rhythmogram are present, mainly corresponds to the
influence of the dorsal branch of the vagus nerve. With the predominance of these frequencies, cardiointervals change very slowly,
the heart works very rhythmically and does not correspond to the normal mode of healthy adaptively changing heart function. With a
lot of stress and danger, the heart may freeze and the rate of contraction becomes low. This corresponds to a state of stupor and
immobility. The amplitude of cardiac emissions in the blood decreases, prolonged stay in this state is dangerous for humans. If
there is no immediate danger, then the heart rate may be normal or even higher. At the same time, the state of the body corresponds
to the definition of "digest", however, stress stress may persist. The low frequency range, when faster waves of changes in the
rhythmogram and heartbeat amplitudes appear, corresponds to the state under the activating action of the sympathetic nervous system
"run or fight", as well as "act or play". the high frequency range, when the rhythmogram is saturated with rapidly changing waves,
mainly corresponds to the influence of the ventral branch of the vagus nerve. the heart adaptively and quickly
changes cardiointervals. This corresponds to a state of increased sociability, readiness to act together and provide assistance
if necessary, in the presence of any threat, and a state of lightness, friendliness and calmness, in the absence of danger.
Part 3. Ayurveda.
The BioFeedBack module
The biofeedback method is an arbitrary volitional control of body functions in order to improve them normally and correct pathology by means of electronic devices that register and transform information about the state of human organs and systems into visual and auditory signals accessible to consciousness.
An example of a biofeedback session using LifePulse Pro software is shown here.
The Orthostatic test module
Orthostatic test is a way to monitor the state of the body and its adaptation to stress. The essence of the test is simple and consists in measuring the pulse lying down and then standing - the difference between these two measurements can tell the general condition of the body, as well as signal problems in the central nervous and cardiovascular systems.
Respiratory test module
The respiratory test is designed to assess the effect of controlled breathing of the patient on the heart rate.
Controlled breathing refers to sufficiently deep breathing (but without hyperventilation) with a certain frequency.
At a respiratory rate of 6 per minute, the vagus nerve is stimulated to the greatest extent.
For activate the test module, press button. Then the working window of the module will open.
The sensor clip is put on the patient's earlobe. When you press the "Start" button, a slowly pulsating circle will appear
with a frequency of 6 times per minute. The patient should take deep breaths and exhalations synchronously with the
pulsations of the circle. At the same time, pulse waves and a diagram of the distribution of neighboring cardiointervals
will be displayed on the screen in real time.
The Valsalva's test module
The Valsalva pulse test is a medical diagnostic test that is used to evaluate the function of the
autonomic nervous system and to diagnose certain medical conditions.
During the Valsalva pulse test, the patient is typically asked to take a deep breath, hold it,
and then forcibly exhale while closing the mouth and nose within 15 seconds. This creates a transient
increase in intrathoracic pressure, which can affect the heart and blood vessels, causing changes in
blood pressure, heart rate, and heart sounds.
Normally, during the strain phase of the Valsalva test, there is an initial increase in heart rate
and blood pressure, followed by a decrease in heart rate and blood pressure during the release phase.
The Valsalva pulse test evaluates the heart rate response during the release phase.
If the heart rate does not decrease appropriately during the release phase, this may indicate
autonomic dysfunction or other medical conditions that affect the cardiovascular system.
The Ruffier's test module
The Ruffier Squat Test is a simple cardiovascular endurance test by LifePulsePro which involves measuring heart rate before and after performing 30 squats.
From the results of this squat test we can calculate the Ruffier- coefficient, used to classify Cardiorespiratory fitness.
Get the subject to sit or lie down, and after at least a few minutes, recorder resting heart rate the pulse over 15 seconds.
When ready, the subject performs 30 squats (it should take 45 seconds). On completion of the 45 seconds, get the subject to immediately sit down, and the post-exercise heart rate is recorder over the first 15 seconds , then again one minute after the test from 1 minute to 1 minute 15 seconds post-exercise.
The sensor test module.
LifePulsePro sensor must be tested before recording pulse waves.
Pulse patterns definition.
Any heart beat occurs at variable intervals. Changes in cardio intervals depend both on the internal state
of the body and on external factors. A new algorithm for analyzing changes in cardio intervals during a given
time of recording pulse waves allows us to determine the unique pulse patterns that the heart creates in a virtual
field. For this, a special color palette has been developed, in which each color corresponds to a certain value of
the cardio interval. Short cardio intervals correspond to changes in the spectrum in the yellow-red area, long
cardio intervals correspond to light blue and blue areas. When recording pulse waves Life Pulse Pro, the system
can display changes in cardio intervals in color. At the same time, the envelope line of the graph corresponds to
the value of cardiointervals. The beep tone is also related to this value. In addition, the algorithm of the
software allows us to determine the pulse patterns of the heart in the form of circular colored rhythmograms.
Each such color picture is a unique display of the work of the heart for a certain period of time.
Each pulse pattern is different from each other and is a kind of portrait of the cardiovascular system,
which depends on gender and age parameters and the state of the body.
Life Pulse Pro diagnostic system is used to detect the symptoms of cardiac autonomic neuropathy.
Cardiovascular autonomic neuropathy is one of the forms of diabetic autonomic neuropathy, in which the regulation of cardiac activity and vascular tone is disrupted due to damage (dysfunction) of the nerve fibers of the autonomic nervous system innervating the heart and blood vessels.
The LifePulse Pro diagnostic system is used to detect the symptoms of cardiac autonomic neuropathy.
Examples of respiratory, orthostatic and Valsalva tests are shown.
Assessment of the effect of alkaline drinking water. Real example.
A rhythmogram is a graphic representation of the duration of R-R intervals. When building a rhythmogram on the axis of the abscissus is postponed
the recording time or number of pulse beats, and on the ordinate axis - the duration of each cardiointerval.
In this case, the upper edge of the rhythmogram has a wavelike appearance. It is formed by changing the heart rhythm.
The heart rhythm is determined by the property of specialized cells of the heart's conducting system to spontaneously activate, the so-called
a property of cardiac automatism. Heart rate regulation is performed by the autonomic nervous system, the Central nervous system
and a number of humoral and reflex effects.
When working in real time, the system can detect possible rhythm disturbances and extrasystoles.
Extrasystole is an extraordinary premature cardiac contraction, depolarization and contraction of the heart or its individual chambers,
this is the most frequently recorded type of arrhythmia.
The presence of extrasystoles is one of the diagnostic signs. However,
to analyze heart rate variability, possible extrasystoles must be removed from consideration, as well as
recording artifacts.
GRAFICAL INFORMATION
Example of a rhythmogram saturated with different frequencies of changes in cardiointervals.
Processed rhythmogram is presented after removing extrasystoles and recording artifacts.
Histogram of R-R intervals and the position of the histogram relative ranges tachycardia, and bradycardia normocarbia.
The extension of the area of the histogram indicates the increase in coefficient variability of the heart rate, reducing
the area of the histogram - reduction coefficient variability of heart rate and strengthen stress stress.
A scatterogram is a graph of the distribution of the measured neighboring cardiointervals with respect to the normal ellipse.
The norm ellipse is constructed taking into account the age and gender of the patient.
In the case of the norm, the coordinates of the point cloud should be evenly distributed inside the ellipse.
Interpretation of the Scatterogram:
* the point cloud shifts to the right - there is an increase in the pulse rate.
* the point cloud shifts to the left - there is a slowing of the pulse.
* the point cloud stretches along the larger axis of the ellipse - there is an increase in the pulse rate variability.
* the point cloud is concentrated in a small area - there is a decrease in the heart rate variability coefficient and an
increase in the stress stress index.
* narrowing of the point cloud indicates the predominance of the respiratory component in the variability of pulse waves.
* the expansion of the point cloud indicates an increase in the non-respiratory component in the variability of pulse waves.
SDNN - standard deviation of cardio intervals from the average value. Indicates how different the length of all R-R intervals is
in General, from their average value. SDNN reflects all the cyclic components responsible for variability during the recording period.
This is one of the main indicators of heart rate variability, which characterizes the state of regulation mechanisms.
RMSSD is the square root of the mean squares of the differences between adjacent cardio intervals. This indicator also reflects variability.
However, unlike the previous indicator, it is used to evaluate high-frequency components of variability.
Its growth reflects an increase in the activity of the parasympathetic regulation link when adapting to loads.
This indicator-it reflects both variability and autonomization of the heart rate and correlates with the largest number of others
characteristics of the wave structure of the heart rhythm.
HRV coefficient is an integral indicator of heart rate variability and reflects the state of the cardiovascular system according to several criteria.
Stress index or stress indicator reflects the level of psycho-emotional and physical stress.
This parameter characterizes the state of the regulatory centers of the cardiovascular system. The index norm is an index value from 50 to 200.
With physical exertion, chronic fatigue, and a decrease in the body's reserves with age, the index ranges from 150 to 500.
With angina, psychophysiological fatigue, significant psychological and emotional stress, the stress index reaches
values from 500 to 800. An index above 800 indicates a significant violation of regulatory mechanisms.
The stress index of more than 900 units can be observed in the pre-infarction state of the patient.
Spectral analysis of the pulse wave structure is used to identify characteristic periods in the dynamics of cardio intervals,
assessment of the contribution of certain periodic components to the overall dynamics of changes in heart rate.
Spectral analysis allows us to distinguish periodic components in the heart rate fluctuations in the wave structure of the heart rate:
- fast or high-frequency vibrations (HF component) (frequency range from 0.15 to 0.4 Hz);
- slow or low-frequency vibrations (LF component) (frequency range from 0.04 to 0.15 Hz);
- very slow or very low frequency vibrations (VLF component) (frequency range from 0.04 to 0.015 Hz);
Spectral analysis evaluates the following indicators:
TR (total power spectrum, TF) - reflects the total effect of exposure to the heart rate of all levels of regulation.
High values are typical for healthy people and reflect a good functional state of the cardiovascular system,
A decrease in the total power of the spectrum is observed with a decrease in the adaptive capabilities of the cardiovascular system,
low stress resistance of the body.
HF high frequency wave power-reflects the activity of the parasympathetic cardioinhibitory center of the medulla oblongata.
Increase - at rest, during sleep, with frequent hyperventilation. Reduction - with physical activity, stress,
various diseases.
LF low frequency wave power-reflects the activity of the sympathetic centers of the medulla oblongata
(pacemaker and vasoconstrictor). High absolute values are observed in healthy people.
Reduction - with physical activity, stress, various diseases.
VLF power of very low frequency waves-reflects the activity of Central ergotropic and humoral-metabolic
mechanisms of heart rate regulation.
LF/HF (vagosympathetic balance coefficient) - the ratio of low-frequency wave power (LF) to high-frequency wave power (HF).
Increasing the coefficient - when activating the sympathetic nervous system.
A decrease in the coefficient occurs when the parasympathetic nervous system is activated.
BRAIN RHYTHMS
Interpreting the test results allows us to indirectly determine the rhythms of the brain
Delta rhythm of the brain corresponds to the state of sleep and low activity
Theta rhythm of the brain corresponds to a state of relaxation, drowsiness, fatigue. The state between sleep and wakefulness.
Alpha rhythm of the brain corresponds to the state of relaxation and closed eyes.
The frequency of the alpha rhythm may decrease with anxiety and fear.
Beta 1 rhythm corresponds to the state of ordinary thinking and wakefulness.
Beta 2 rhythm corresponds to a state of emotional stress and tension.
Gamma rhythm of the brain reflects the state of maximum concentration and problem solving.
Example of determining the ratio of respiratory rate and pulse rate.
The frequency of respiratory cycles is one of the main parameters for assessing the state of the entire body.
The algorithm of the respiratory evaluation module allows to get information about the respiratory rate after processing the full schedule of pulse wave recording.
The number of pulse beats per respiratory cycle is an important characteristic of the state of the body.
Coherence (consistency) refers to a special state of the cardiovascular system and brain activity in which there is a certain "synchronization" of these body systems.
When the state of coherence is activated, the physiological systems of the body work more efficiently , emotional stability is ensured , as well as mental clarity increases and cognitive functions improve .
Positive signals coming from the heart to the brain affect brain function and improve positive emotions, attention, perception, memory, problem solving and intuition.
It also significantly reduces uncertainty and stress, which are obstacles to success. On the contrary, unstable and disordered heart rate patterns can disrupt higher brain functions.
The "Coherence" module allows you to assess the degree of consistency of the body's systems.
The assessment is made by mathematical processing of the results of the pulse variability test.
The working window of the module displays a diagram of the main parameters of variability,
taking into account the ratio of respiratory cycles and the number of heartbeats, as well as the calculated
coefficient of coherence of the body systems.
An example diagram is shown below.
Based on the results of a General assessment of the state of regulatory systems, the program prepares an interpretation of the diagnostic conclusion
for help and decision-making by the doctor.
RESPIRATORY TEST
The respiratory test is designed to assess the effect of controlled breathing of the patient on the heart rate.
Controlled breathing refers to sufficiently deep breathing (but without hyperventilation) with a certain frequency.
At a respiratory rate of 6 per minute, the vagus nerve is stimulated to the greatest extent.
For activate the test module, press button. Then the working window of the module will open.
The sensor clip is put on the patient's earlobe. When you press the "Start" button, a slowly pulsating circle will appear
with a frequency of 6 times per minute. The patient should take deep breaths and exhalations synchronously with the
pulsations of the circle. At the same time, pulse waves and a diagram of the distribution of neighboring cardiointervals
will be displayed on the screen in real time.
The timer will automatically stop at the end of 1 minute.
The rhythmogram of the heart with controlled breathing will be presented on the screen.
Example of a report of respiratory test results:
The result of the test is an assessment of the reaction of the autonomic nervous system to
controlled breathing in comparison with the norm.
The biofeedback method is an arbitrary volitional control of body functions in order to improve them normally and
correct pathology by means of electronic devices that register and transform information about the state of human
organs and systems into visual and auditory signals accessible to consciousness.
Activation of the biofeedback module (biofeedback) is performed by pressing the corresponding menu item in the
Recorder window. This leads to the opening of the module tab. The algorithm of the module is organized in such
a way that the patient can observe the occurrence of a pulse wave, hear a sound signal, the tonality of which depends
on the frequency of the heartbeat, as well as observe the movements of a red ball on color field.
The location of this ball on the vertical axis depends on the magnitude of the cardiointerval between the two
heartbeats of the patient in real time. The green color of the field corresponds to the range of the norm
(depending on the age and gender of the patient).
Yellow color corresponds to a range exceeding the norm, blue color corresponds to a range below the norm.
The working window of the biofeedback module
During the session, the patient sees and hears how his cardiovascular and respiratory systems work. The computer module converts changes in the work of the heart into visible and audible feedback signals.
When inhaling, the heart rate increases – the red ball on the color field moves up, the tone of the sound increases. When exhaling, the heart rate
decreases- the red ball on the color field moves down, the tone of the sound decreases.
Volitional control of the movement of the ball allows you to form a type of breathing with synchronization of the phases of breathing and the work of the heart. Conscious management of diaphragmatic
relaxation breathing with the help of biofeedback has a healing effect on
respiratory, cardiovascular and nervous systems of the body.
The test is based on a homeopathic method of determining the sensitivity of the body to drugs by
changing the characteristics of the pulse wave. The method allows you to objectively determine the
sensitivity of the human body to drugs before their introduction into the body, that is, to predict
the result of therapeutic effects.
In contrast to the subjective methods of the "muscle ring test" or kinesiological testing for the
selection of drugs, the test uses an objective instrumental method for assessing changes in the
patient's condition.
Example. Drug select test result:
RESULTS BY AYURVEDA
GUNAS
Gunas are one of the main concepts in Ayurveda. Gunas describe the features of the human condition.
An example of displaying the Guna tab is shown below:
1. The activity of the dorsal vagal complex (the unmyelized part of the vagus) correlates with
the power of the very low frequency VLF spectrum present in pulse waves.
Corresponds to the state of the body "freeze, do not move, go limp, pretend to be dead"
From the point of view of Ayurveda, this is TAMAS-inertia, inactivity, inhibition, stupor.
Characteristic - lazy, indifferent, deceitful
2. The activity of the sympathetic-adrenal system (sympathetic trunks, ganglia) is correlated with the
power of the low-frequency LF spectrum present in pulse waves.
Corresponds to the state of the body " fight or flight"
From the point of view of Ayurveda, this is RAJAS - action, passion, activity, excitement.
Characteristic-materialistic, passionate, greedy, using other people for their own purposes
3. The activity of the ventral vagal complex (the myelized part of the vagus) is correlated with
the high-frequency HF power present in the pulse waves.
Corresponds to the state of the body "make friends, communicate, help"
From the point of view of Ayurveda, this is SATTVA-a state of knowledge, purity, harmony, spirituality
Characteristic - friendly, sociable, tolerant of other opinions.
DOSHAS and FIVE ELEMENTS ACTIVITY DIAGRAM
From the idea of the degree of manifestation of each of the three gunas, one can proceed to the idea of
the patient's three doshas as a complex of energetic substances. The philosophy of Ayurveda is able to point
out the forms of manifestation of various gunas in the doshas - VATA, PITTA, KAPHA.
And also display the activity of the "FIVE ELEMENTS"
The analytical module of the diagnostic system LifePulsAS can offer some recommendations for restoring
the balance of the patient's condition. It can be MUDRAS, MANTRAS and FOOD.
Healing Mudras are hands and fingers arranged in a special way. Mudras are a way of influencing oneself,
thanks to which one can find inner peace and health.
Example of recommended Mudras:
In some cases, the software offers an ambulance to improve the condition if significant deviations from the
normal state are detected during the recording of pulse waves.
MANTRAS
According to the results of the assessment of the activity of the chakras, the software offers the most
acceptable Mantra for restoring balance.
The comparison module can display the results of two measurements, for example, before and after any influence
on the patient. This, for example, can help in assessing the effect on the patient of therapy procedures ,
acupuncture, dietary supplements, medications, diet, yoga exercises, meditation, listening to mantras, affirmations,
and more.
An example of a comparative analysis of the results before and after listening to the OM mantra
The system allows us to see the basic data of all the studies conducted for a particular patient over a long
period of time. For example, in a few weeks. We can see how the stress index changed, the value of the total
spectral power of pulse waves, as well as graphs of the three component frequencies in the total spectrum of
pulse waves. At the same time, we see the general view and can observe what changes occur from the measurement to next
measurement. Separately, an averaged frequencies distribution diagram or gunas is presented, which is an integral
characteristic that allows us to see the general lifestyle of the patient.
The proposed diagnostic system LifePulsePro is convenient and easy to use and is a type of express diagnosis and can
be useful for all human pulse researchers, practicing doctors and specialists in Ayurveda, as well as people
who monitor their health.
Ayurveda For You - Comprehensive website on Ayurveda.
Learn Ayurveda through ebooks, free email courses, free newsletter, Online certificate courses.